QOTC.NTTEMPORAL IMAGING AND SUPER-
RESOLVED SPECTROSCOPY WITH A
QUANTUM MEMORY

Michał Parniak

Mateusz Mazelanik, Adam Leszczyński, Michał Lipka, Wojciech Wasilewski Konrad Banaszek Centre for Quantum Optical Technologies University of Warsaw qot.uw.edu.pl

European Union European Regional Development Fund

A VAVAL VESSEARCY

SPIE Optics+Photonics

IVERSITY

WARSAW

U. of Warsaw

PHYSICAL REVIEW LETTERS 121, 250503 (2018) With Konrad Banaszek and Rafał Demkowicz-Dobrzański

NBI/Copenhagen

Nature Physics **17**, 228–233 (2021) With Eugene S. Polzik

Imaging resolution - Rayleigh Criterion

THE

LONDON, EDINBURGH, AND DUBLIN

PHILOSOPHICAL MAGAZINE

AND

JOURNAL OF SCIENCE.

[FIFTH SERIES.]

OCTOBER 1879.

 XXXI. Investigations in Optics, with special reference to the Spectroscope. By LORD RAYLEIGH, F.R.S.* [Plate VII.]
 § 1. Resolving, or Separating, Power of Optical Instruments.

Rayleigh Limit

Ultimate bound

Quantum Cramer-Rao bound – optimized over all possible states and measurements Precision = Inverse Uncertainties² per photons

Constant precision of separation estimation – much more information available

Better measurement scheme needed!

Phys. Rev. X 6, 031033

Beating the Rayleigh Limit

SPADE (spatial-mode demultiplexing)

SPLICE (super-resolved position localization by inversion of coherence along an edge)

Ultranarrowband optical spectroscopy

Hot and cold atoms MHz-kHz

Optica 7, 718-725 (2020)

Optica 1, pp. 84-88 (2014)

System – gradient echo memory in cold rubidium-87 atoms

$T \sim 20 - 100 \ \mu K$

Wavevector multiplexed quantum memory (without GEM, 665 wavevector modes) Nat. Commun **8**, 2140 (2017)

Far-field temporal imaging

Temporal imaging

Opt. Lett. 14, 630 (1989)

- Spectral conversion
- Bandwidth manipulation
- Temporal ghost imaging
- Characterization of the time-frequency entanglement
- Manipulation of field-orthogonal temporal modes

Existing solutions are compatible with solid-state emission (high bandwith, low spectral resolution) No solution for narrowband atomic emission

Light-atom interface

$$\hat{\rho}(\mathbf{r}) = \frac{1}{1+|\beta(\mathbf{r})|^2} \begin{pmatrix} 1 & \beta(\mathbf{r})e^{i\mathbf{K}\cdot\mathbf{r}} \\ \beta^*(\mathbf{r})e^{-i\mathbf{K}\cdot\mathbf{r}} & |\beta(\mathbf{r})|^2 \end{pmatrix}.$$
 Spin wave

Gradient echo memory (GEM)

$$\begin{split} \frac{\partial \check{\rho}_{hg}(z,t)}{\partial t} &= \frac{i}{\hbar} \frac{\Omega^*(t) dA(z,t)}{4\Delta - 2i\Gamma} - \frac{1}{2\tau} \check{\rho}_{hg}(z,t) + i\delta_{\text{tot}}(z,t) \check{\rho}_{hg}(z,t), \\ \frac{\partial A(z,t)}{\partial z} &= -i \frac{\hbar \Omega(t) \check{\rho}_{hg}(z,t) / d + A(z,t)}{2\Delta + i\Gamma} \frac{\Gamma}{2} gn(z), \end{split}$$

Hosseini et al., Nature 461, 241(2009)

ac-Stark spin-wave phase modulation

Differential phase accumulated during free evolution

Far-field temporal imaging

Far-field temporal imaging

 $\begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{t}} & 1 \end{bmatrix} \begin{bmatrix} 1 & f_{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{t}} & 1 \end{bmatrix} = \begin{bmatrix} 0 & f_{t} \\ -\frac{1}{f_{t}} & 0 \end{bmatrix} = \begin{bmatrix} 1 & f_{t} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{f_{t}} & 1 \end{bmatrix} \begin{bmatrix} 1 & f_{t} \\ 0 & 1 \end{bmatrix}$

Time-lens and spectro-spatial mapping

Temporal propagation

$$\tilde{A}(\omega) \to \tilde{A}(\omega) \exp[-i(f_{\rm t}/\omega_0)\omega^2]$$

Thanks to spectro-spatial mapping the temporal propagation is realized by imposing a quadratic phase (Fresnel) profile onto the atomic coherence ρ_{hg}

Wigner function transformation

1

For optical amplitudes:

For atomic coherence:

$$\mathcal{W}(t,\omega) = \frac{1}{2\pi} \int \mathcal{A}(t+\xi/2) \mathcal{A}^*(t-\xi/2) \exp(-i\omega\xi) d\xi$$
$$\mathcal{W}(z,k_z) = \frac{1}{\sqrt{2\pi}} \int \varrho_{hg}(z+\xi/2) \varrho_{hg}^*(z-\xi/2) \exp(-ik_z\xi) d\xi$$

Temporal phase modulations correspond to z-axis reshaping of the atomic coherence Wigner function

$$\mathcal{A}(t) \to \mathcal{A}(t) \exp\left(i\int \delta(t)dt\right) \qquad \qquad \mathcal{W}(z,k_z) \xrightarrow{\delta(t)} \mathcal{W}(z',k_z)$$

Spectral components of the signal pulse are linked with the complex amplitude of the atomic coherence along the ensemble. At the same time, in time domain, the pulse shape is transferred to wavevector-space components of the coherence.

 $\tilde{\mathcal{A}}(\omega) \leftrightarrow \varrho_{hg}(z)$

$$\mathcal{A}(t) \leftrightarrow \tilde{\rho}_{hg}(k_z)$$

Real-space phase modulations of the atomic coherence reshape the Wigner function along kz-axis

$$\varrho_{hg}(z) \rightarrow \varrho(z) \exp(i\chi(z)) \qquad \qquad \mathcal{W}(z,k_z) \xrightarrow{\chi(z)} \mathcal{W}(z,k'_z)$$

FF-TI (QMTI) - Rotating Wigner function

$$W(t,\omega) = 1/\sqrt{2\pi} \int_{-\infty}^{\infty} A(t+\xi/2)A^*(t-\xi/2)\exp(-i\omega\xi)$$

Example input/output

Optica 7, 203-208 (2020)

arXiv:2106.04450

Two incoherent sources

$$\tilde{I}(\omega) = \frac{1}{2} \left(|\tilde{\psi}(\omega - \delta\omega/2)|^2 + |\tilde{\psi}_-(\omega + \delta\omega/2)|^2 \right)$$
$$\tilde{\psi}(\omega) = \tilde{\psi}_{\blacktriangle}(\omega) = \left(\sqrt{2\pi\sigma}\right)^{-1/2} \exp\left(-\frac{\omega^2}{4\sigma^2}\right)$$

PuDTAI Pulse-division time-axis-inversion interferometer

For real space imaging: Wavefront-division image-inversion interferometer

Phys. Rev. A 102, 013712 (2020) 22

PuDTAI in phase space

$$\mathcal{W}(z,k_z) = \frac{1}{\sqrt{2\pi}} \int \varrho_{hg}(z+\xi/2) \varrho_{hg}^*(z-\xi/2) \exp(-ik_z\xi) \mathrm{d}\xi$$

PuDTAI model

ε

Fisher information density at SLIVER (PuDTAI) outputs

0.25

0.20

0.15

0.10

0.05

0.00

0.0

0.2

£

$$d\mathcal{F}_{i} = \frac{1}{p_{i}(\omega)} \left(\frac{\partial}{\partial \varepsilon} p_{i}(\omega)\right)^{2} d\omega$$
$$\mathcal{F}_{i} = \int_{\mathfrak{A}} d\mathcal{F}_{i}$$

 $\mathcal{F}_1, \mathcal{V} = 1$

0.8

 $F_1, V = 0.991$

 $F_2, V = 0.764$

1.0

- $\mathcal{F}_2, \mathcal{V}=1$

0.4

0.6

The FI is concentrated in the lobes, thus removal of the center part is acceptable

Separation estimation

Comparison

Our approach: PuDTAI

Superresolution parameter:

$$\mathfrak{s} = \lim_{\varepsilon \to 0} (\mathcal{F}/\mathcal{F}_{\mathrm{DI}})$$

See also: [Phys. Rev. Applied 15, 034071]

Quantum Pulse Gate (QPG) - SPADE

Phys. Rev. Lett. 121, 090501 (2018)

Homodyne/Heterodyne (under development)

Phys. Rev. A 102, 063526 (2020)

Acknowledgments

Diamentowy Grant

Joint work with: Mateusz Mazelanik Adam Leszczyński

We acknowledge insightful discussions with: Wojciech Wasilewski Konrad Banaszek Rafał Demkowicz-Dobrzański Marcin Jarzyna Stanisław Kurdziałek

<u>Centre for Quantum Optical</u> <u>Technologies (QOT)</u>

European Union European Regional Development Fund

ndation for

NATIONAL SCIENCE CENTRE