Abstract

We theoretically analyze the properties of a Raman quan-
tum light-atom interface in long atomic ensemble and
its applications as a quantum memory or two-mode
squeezed state generator. We consider the weak-coupling
regime and include both Stokes and anti-Stokes scattering and
the effects of Doppler broadening in buffer gas assum-
ing frequent velocity-changing collisions. The model
we present bridges the gap between the Stokes only and anti-
Stokes only interactions providing simple, universal description
in a temporally and longitudinally multimode situa-
tion.

Introduction
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Figure 1: (a) Strong linearly polarized pump of amplitude P couples two separate
hyperfine components of the ground state, |g) and |h) via the excited state |e).
Pump is detuned from the |g) — |e) transition by A + A, and from the |h) —
le) transition by A + Ay., where A = 0 means the pump is tuned to the line
centroid. (b) Coherent scattering coefficients cr(A), ¢y (A) for rubidium 87 D1
line (A = 795 nm). We take two hyperfine components of the ground state as
levels |[g) = |F' = 1,mp = 0) and |h) = |F = 2,mp = 0). We take the atom
number density equal N = 10'?> cm™> and pump field Rabi frequency equal to the
natural linewidth I' /27 = 5.75 MHz.

Off-resonant Raman interaction is a vividly developing approach
to quantum memory. Two basic modes of operation can be distin-
ouished:

= Photons are created in an external source are stored in memory
via anti-Stokes scattering (read-in).

= Pair of photons and atomic excitations are created in the
memory via Stokes scattering

Stored atomic coherence that takes on the form of spinwave is cre-
ated and can be converted back to light in the read-out process. The
spinwaves can be stored and then further manipulated. In realistic
experimental situations however, both Stokes and anti-Stokes scat-
tering are present. If one process is required, the other will always
maliciously prevail. We analyze the interaction of both Stokes and
anti-Stokes sidebands with atomic excitations.
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Figure 2: Typical experimental situations include (a) generating photons externally
and imprinting them onto quantum memory in the read-in process, (b) generating
pair of photons and atomic excitations and (c) read-out of stored atomic excita-

tions.
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Evolution of Fields

We consider a full of interaction, including collision, as together with
warm atomic ensembles an inert buffer gas, such as neon, krypton
or xenon is used to make the motion of atoms diffusive and conse-
quently prolong the lifetime of stored spatial mode |1, 2|. Collisions
transfer atoms from velocity class v into v with probability per unit
time given by ~,K (v < v")dv’, where 7, is the collision rate and
K (v < ') is the collisional kernel [3].

Adiabatic elimination lead to a set of Maxwell-Bloch equations [4]
describing the interaction. They can be cast in terms of field oper-
ators in a reference frame co-moving with weak light [5]:
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are fast compared to the Raman interaction -, > LC%,’W, then the
velocity dependence of number operator of atoms in |h) state repre-
sented by IA)T(Z, t, v)@(z, t,v) remains close to thermal equilibrium.
Consequently, we may separate out the known, Gaussian velocity
dependence and assume b(z, t,v) = b(z, t)\/g(0v).

The equation (3) for b(z,¢,v) can now be integrated formally and
averaged over velocity distribution b(z,t) = [ /g(0)b(z,t,v)dv,
yielding:

where g(v) =
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This result corresponds to taking into account only the fundamental
velocity mode [6]. Substituting the result to Eqgs. (1)—(2) gives the
following equation of evolution for the photonic modes:
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The solution of equations (4)—(5) takes on a form of a linear trans-
formation between the input and output quantum fields.
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Figure 3: Diagrammatic representation of Raman interaction for (a) x > 0 and

(b) k < 0. Squeezing ( = atanh|§—vf‘;| for k >0 and ( = atanh|55—vg| for k < 0.

Hyperbolic rotation R({) between the photonic modes is used to
diagonalize the matrix from Eq. (5). Modes &f(z,¢) and d(z, t) arc
defined as linear combinations of #(z,t) and @'(2,t). The mode
d(z,t) turns out to be decoupled: d(L,t) = d(0,t). The equations
coupling atoms b(z, t) with photonic mode &(z, t) are the same as in
single-sideband Raman scattering |4, 7, 5] and their solution reads:
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where the interaction strength is measured by x = ¢; + |[ew|*

and Yy(z, ) = \/gmzm), So(2, 1) = Iy(2v/kzt).

The mode basis for atomic and photonic fields and squeezing &, or
beamsplitter transmission 7, for the central operation are calculated
from SVD of Green functions [5, 8, 9]. For weak interaction we
calculate squeezing &, = (kLT)" /2 if || > |cg| or beamsplitter
transmission 7, = (—xLT)" /2 if |G| < |ég|. The mode functions
are given by Legendre polynomials (see figure below).
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Figure 4: First four (a) input and (b) output atomic modes.

Reduction

In the regime of very weak coupling, we can find triples of modes that interact only with each other, as input and output modes
have the same shape

Universal picture
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Figure 5: Universal representation of Raman interaction.

We can find a single representation for both cases from Fig. 3. The
parameters of interaction for fundamental mode are:
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This picture allows us to easily find output state of fields in general
form:
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