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I. INTRODUCTION

II. CLOSED DIAMOND CONFIGURATION

III. EXPERIMENTAL
Warm rubidium vapors constitute a versatile medium for quantum engineering with 
light and atoms. Optical transitions to the lowest excited levels, the D1 and D2 lines, 
are widely used, enabling the quantum memory for light based on Raman scattering 
[1].

On the other hand, the usage of higher excited levels is not so common. Here we 
present a scheme for non-linear frequency conversion using the so-called diamond 
configuration of atomic levels [2,3]. We study the spectral properties of four wave 
mixing signal in the presence of Doppler broadening, both experimentally and 
theoretically.

Finally, we demonstrate a quantum memory scheme that would join the possibilities 
given by the Raman scattering and the diamond configuration
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The diamond configuration 
consists of four atomic levels 
coupled by light, forming a 
closed loop transition. We 
use three excited levels of 
rubidium and the ground 
state. Three coupling lasers at 
780 nm (1-2 transition), 776 
nm (2-3 transition) and 795 
nm (4-1 transition) result in 
emission of 762 nm light (3-4 
transition).

We define the detunings Δ as 
complex variables: the real 
part is the actual laser 
detuning, while the imaginary 
part is the relaxation rate Γ.

We consider a single atom and calculate the lowest non-vanishing order of the 
perturbation series for atomic coherence resulting in emission from the 3-4 transition 
in terms of Rabi frequencies.

In order to include the Doppler broadening we average the above expression over all 
velocity classes.

The integration can be carried out analytically, if we first perform the partial fractions 
decomposition in terms of velocity.

Each component being of the following form is integrated separately, and the result is 
expressed in terms of the Faddeeva special function w(z). 

The last step is to include rich level structure of the real atom, that is hyperfine splitting 
and degeneracy. We consider all possible closed diamond configurations (beginning 
and ending with the same level) and add their contributions.
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Final light intensity is proportional to the absolute value squared of the coherence.
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Figure demonstrates the experimental setup used to generate light at 762 nm via four 
wave mixing. Beams from three lasers (LD 780, LD 776, LD 795) intersect at a small 
angle (8 mrad) inside magnetically shielded hot (100 deg. C) rubidium cell.
Generated 762 nm light is separated both spectrally (using interference filters) and 
spatially from the other three beams. From approximately 30 mW at each of the 
incident beams we obtain at most 100 nW of 762 nm light.
(AOM - acousto-optical modulator, λ/2 - half wave plate, λ/4 - quarter wave plate, APD - 
avalanche photodiode, (P)BS - (polarizing) beamsplitter, LD - laser diode)

Focal plane image 
demonstrates the 
phase matching 
condition.

IV. OPEN DIAMOND CONFIGURATION
                       

Experimental (left) and theoretical (right) spectrum of four wave mixing. Reference 
curves are measured using saturated absorption spectroscopy.
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A new scheme of atomic 
quantum memory for light:
reading - applying only 
coupling lasers to probe the 
ground state coherence
writing - applying light at 762 
nm to create ground state 
coherence

Main advantage over  Λ-
configuration:
scattered photons have a 
completely different 
wavelength - ease of spectral 
separation
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